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Summary:This paper investigates the problem of temperature extrema in a thin cylindrical shell under local axially
symmetrical heating when this problem is used to calculate the optimum parameters of 3D shell structures. The
relevant variation problem is defined and the equations which determine the extremum thermal load are derived. A
mathematical model is provided to study thermal stress at the intersection line of two connected shells.
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1. INTRODUCTION

In general, the shell-type structures in power nreechndustry such as pressure vessels, tanks,
reservoirs and other items are produced with weldednections including nozzles, throats,
fasteners, etc. Such connections have interselities of various geometry which varies in plan
view from a circle to ellipse or other second-ordarve. It is an important task for designer to
determine the best position of the welded item siifficient thermoelastic capacity.

Let's consider the problem of intersection betweea cylindrical shells of revolution. For the
given axially symmetric loads and the resulting penature field we shall take a group of shells
which satisfy certain constraints and find the lsliich retains thermal elastic properties.

2. PROBLEM OF INTERSECTION BETWEEN TWO CYLINDRICAL SHELLS
OF REVOLUTION

The problem conditions are defined as follows. &efrthin isotropic cylindrical shelf(R)
(hereinafter called a bearing shell) is connectét & thin cylinderSy(r) of radiusr, and the thin



cylinder intersects the main cylindrical shell aigke ¢ to the outside normal line in point O,
whereR >>r. The area of connection suffers local heating whéh maximum temperatuf®. The
boundary conditions are of the third type when bottindrical shells satisfy the following
equations:

ott?

=0; "% = T"%n = const.
dy (+h) (-h)

Indices 1, 2 correspond to the main and connecggBddcical shells while indices @ and ¢h)
relate to the internal and external surfaces cfdtshells respectively.

It is required to determine the maximum allowaljeiealent stress caused by thermal factor at the
intersection line between two members under thelastie conditions.

We will study alternatives where the connected thyilinder is positioned by clockwise rotation of
its longitudinal axis in point 0. Please refer igu¥e 1 for the details.

Let's write a matching condition for intersectiohtwo cylindrical shells of revolution. 1§, is a
selected area of the main shell &ds a selected area of the connected cylinder $aenossess
along the curven.

SNS=m, MOm, MOS; MOS.

The required approximate solution may be foundr aftdving a model problem of local extremum
in the temperature field of thin shells under sfediconditions of heating. The problems of this
type are defined and solved in a number of padef.[

The minimum of function of shell elastic energy densidered to be estimation criterion of
optimality. The relevant variation problem may lsdied as on Figure 1.

L

1

Figure 1. Relative position of two intersecting thin cylindrical shells of revolution

It is required to find the extremum of function slfell elastic energy on a set of displacement
functionsu, v, w and thermal force and momentum functidis 7>, which satisfy the equation
system, attachment conditions of the edge crossiose@nd specified additional restraint
conditions.
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In this case it would be useful to consider a fledblem of cylindrical shell when the effect of
temperature field is found in plane section, Fig2ire

Figure 2. Plane problem of cylindrical shell
The temperature field may be described by coordiparametel and there is functio; (5),
whereR = S, buckling function isv =f (R), 7. = 0
The boundary conditions are defined as follows:

ot
a/-o Teny = Tn) = const.

Influence of forces in the cylindrical shell is dehined by the equations:
Da, (1+v)(, m Y %
N, = —— ;TRZ [1+ 3R2j J;'I'lcos(ﬁ—ﬂo)dﬁo;
M1=0; Mz2=-RNj, 1)

3
whereD; is bending stiffnessp, :?)(Zthz); [ is a coordinate of mid-surface of the sheilis a
-V

coefficient of linear thermal expansioff is an average characteristic of temperature field,

T, —2— J' tdy; E is modulus of elasticityy is Poison's raticzh is a shell thickness.
-h

Let's write the equation of temperature functionalths associated with buckling function:
0°w,
05

2

j(wo—atT)dﬂ:O. 2)

0

+w, - a, (1+v) T+ de,BO chos(/j £,)dB, = G

A variation problem is defined as follows. It iqtered to find the extremum of function of shell
elastic energy on a set of functiong (£) andT (f), each function satisfies the equations (2) and
additional constraints for buckling function in thess sections:

B=6@G=1,2 .10
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such as:

2

Wo () =au,  [w,(B)dB=a,

0

and ensures that the following functions are staiig:

K, = [ wa(B-B)dB,:;

Kz = J- H(ﬁ _ﬁ)wodlgo;

Ki=ai, Kz=ag.
Let's use a particular solution of thermal conduigtiproblem of cylindrical shell with boundary

conditions g—t:O. In this case the following family of the extremuemperature fields are
14

derived as a solution of the defined variationgbem:
T, = AcosB+B sinﬁ+Z{in [ & copB-B)+y; siB —,8)]} o(B +p)+
- l 2m
+§T { Tldﬁo : (3)

whereé=cos - 3); {=sin G - D).
Lagrange multipliers satisfy the conditions:

n

2 [V (A -sinf)+ 14 (1 coss) | = ¢

Z[yoi (1—COS,3i)+y]j Sirﬂ]: (.

i=1

Let's take the general solution of the variatioobbem and extract the extremum temperature field,
whose first derivative and the field itself is dombus ing and which satisfies the following
conditions on the surface (Figure 3):

T(H=Ty To(-P)=To(+ B)=0,T (D=0,
2- L fi(0)s0+B; 0<s(+B) s m i< (- f) <21 4)
This particular solution looks like [2]:

T=T, cosp, — co . (5)
1+ cospB

We set:

Az cosB,( Q- co$+p,) |

1+ coy+43,) ©
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Figure 3. Surface conditions applied for the solution
of the problem

Characteristic parametdris a coordinate of the unit function of temperatfieldt, = f (A), which
acts in the plane section of cylindrical shell awthieves its maximum in poinB; (0) and which
belongs to the family of extremum temperature 8¢Rl.

Now we consider an infinite cylindrical shell withose ends which is subjected to influence of
variable temperature field acting in the planestilto the shell longitudinal axis. We assume that
this is a plane problem of cylindrical shell, segufe 4. The shell has the same parameters as taken
before.

The temperature field may be described by coordiparamete3 and there is functior (5),
where S is a coordinate of the ellipse generated by theeplsection tilted at anglé to the
longitudinal axis of cylindrical shell. The bounglaconditions are the same as defined for the
previous problem.

Let's take the earlier derived solution (5, 6) gmsdicular solution of the current problem whdre t
plane section is tilted at angl€= 0 and the radius of the cylindrical shell isadius of curvatur@
(D) of the new generated figure. Based on geometrétalionship (Figure 4) it follows that:

- p achieves the maximum value in the top pole gbsH whereo =R /cosé;

- p has the minimum value at the small axis of thipsdl wherep =R,

K
= R=p M)

TN ().

Figure 4. Forces which act in the planetilted at angle 8to the longitudinal axis
of cylindrical shell

With parametric equation of ellipse, we get:

p(x) =Rsint; p(y) = (R/cos@) cost; 0<st< 21
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Now we define non-dimensional radius of curvature:

_Jcogt+ sirft codd
0= :
cosd

It is easy to check that &= 0, when the plane is perpendicular to the lamyital axis of the shell,
radius of curvatur@ is equal to one (the curve shape is a circumfeenc

The extremum temperature field which satisfies same conditions at the surface (4), Figure 5,
may be defined by the equation:

T, :TO(\/COSZI+ sirft co%H]cosﬁl— cog @)

cosd I+ co?

L0 T

Figure 5. Conditions at the surface

We set:

(8)

A= Jcogt + sirft codf |cosB — coB,
cosd  co®B,

Characteristic parametdy is a coordinate of the unit function of temperatfieldt =f (A;), which
acts in the tilted plane section of cylindrical lslzad achieves its maximum in poing, (0) and
which belongs to the family of extremum temperafietels (7).

Find below the curves of unit function of temperattield versus coordinate parametdrandA;
when the plane section is tilted at various angle @< 8C°to the longitudinal axis of the shell,
Figure 6. These calculations are made with LABVIE®#tware with the help of operator prepared
for specified values of parametewithin the range 8t < 90° at a step of 10

It is obvious that the level of extremum temperatdiffers depending on the different shapes of
shell cross section which is cut by the plane sibge to the local heat load. The minimum level
corresponds to the shell cross section which h&tsape of circumference. All other cross sections
in the shape of ellipse produce higher level ofraxtum temperature. The greater the angle
between the tilted plane section and the shellitadmal axis, the higher maximum temperature
when thermoelastic properties are retained.
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If we solve an inverse problem and take the eadldained extremum temperature as the limit
values for transient processes from elastic cambtito elastoplastic conditions, we may define the
maximum allowable equivalent stress by the formula:

_ EaT

max

Umax 2(1—V) 1

whereTmax corresponds to equation (7).
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Figure 6.Unit function of temperature field which actsin particular plane section tilted to the axis of
cylindrical shell: curve 1 corresponds to the cross section perpendicular to the axis of cylindrical shell,
angle = 0O;curve 2 correspondsto the cross section cut by the plane which istilted at angle 8= 459,

curve 3 corresponds to the cross section cut by the plane which istilted at angle 8= 704
curve 4 corresponds to the cross section cut by the plane which istilted at angle 8= 80°

3. CONCLUSION
The proposed model problem is used to find the $@stions in design of intersection between two

cylindrical shells, it is preferable to combine thygtimum position of the connected member and
optimum manufacturing process.

48



REFERENCES

[1] Podstrigach Y. S., Yarema S. Y.: Thermal steess the shells, Kiev Branch of the Academy of
Sciences URSR. 1961, 242

[2] Burak Y. I., Grigolyuk E. I., Podstrigach Y. SOn an extremal problem of thermoelasticity for
an infinite cylindrical shell. Paper of Academy®diences of USSR, 1967, Vol. 174, No. 3.

[3] Mironova L. I.: Parameters of optimum controf ¢he thermotension of designs of
obolochechnogo of type at thermal loadithg Russian) International Journal of Engineering
and Automation Problems, 2013, No. 1, pp. 101 = 105

[4] Mironova L. l.. Extreme temperature problem ame methods of optimal design of shell
structureg(In Russian), International Journal Bhgineering and Automation Problems. 2014,
No. 1, pp. 126-130.

[5] Mironova L. I. and Fedik I. I. The local theriraading of two intersecting cylindrical rotatidna
shells with a variable wall thickness, Journal aidlinery Manufacture and Reliability, 2015,
Vol. 44, No. 8, pp. 720 — 725.

49



